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Course Outline

Applied Population Ecology (Arpat Ozgul)
Life history theory, basic population models, introduction to population analysis and
biodemography.

Invasion Biology (Christoph Kueffer)
Basics of invasion biology, scientific and policy aspects of invasive species, how to use
population biology theory in controversial science-policy settings.

Restoration Ecology (Philippe Saner)
Strategies of ecosystem restoration, fragmentation, species diversity, wildlife
corridors, Borneo case study, role of rare species

Rewilding (Dennis Hansen)
Concept of “rewilding”, extant species to functionally replace extinct species,
controversy in conservation and restoration, a rewilding proposal grounded in
ecological theory.

Biodiversity monitoring (Benedikt Schmidt)
Key principles for designing biodiversity surveys, pros and cons of some state
variables used to describe biodiversity trends, example cases from real-world
monitoring programs.
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Lecture Outline

* Avery brief intro to bio-demography
« Life history theory
— Traits and trade-offs
« Linking reproduction and survival together

— Matrix population models

arpat.net/lecture.pdf

arpat.net/practical.pdf
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Measurement & Analysis Prediction & Modeling

Demographic parameters
(birth, death, migration, ...)

Predicting population trends

Assessing population persistence
Social and environmental factors
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Biodemography / Population Ecology

Prediction & Modeling

Measurement & Analysis
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History: Beginning
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John Graunt (1662)

History: Exponential growth

Exponential Growth ESSAY

PRINCIPLE OF POPULATION,

,/" Real Growth

THETUTURE DFROVESINT OF SOCIETY.

Thomas Robert Malthus (1789)

History: Logistic growth

Exponential Growth

P VERHULST

Pierre Francois Verhulst (1838)

History: Mortality law
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History: Age structure

Patrick H. Leslie (1945)
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History: Stage structure

Leonard P. Lefkovitch (1965)
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Lecture Outline

A very brief intro to bio-demography
Life history theory
— Traits and trade-offs

Linking reproduction and survival together

— Matrix population models

Life history theory

What is life history?

Life history of an organism is the timing of key “life events”
from birth to death.

,iNﬁﬂ&

Nymphal instars
(6-14 molts)

6-12 months

American cockroach
10 months

Once a month

Life history theory explains why...

* Organisms are small or large

* They have a short or a long life

* They mature early or late

* They have few or many offspring

Black-browed albatross
38cm Wingspan 240cm
160g Weight 4kg
1-2yr Longevity 40yrs
10months Age at 1°* reproduction  6-15yrs
12-15eggs *3 Fecundity legg
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Life history traits (LHT)

*  When is the 1% breeding? Age / Size at maturity

* How many times? Iteroparity / Semelparity

Litter / Clutch size
Reproductive effort

* How many offpsring?

Offspring sex-ratio

« Stay or leave? Natal dispersal / Migration

*  When to die? Age / Size-specific reproductive and
survival schedule
Longevity / Senescence

Life history & fitness

Timing of events is shaped by natural selection to produce the largest
possible number of surviving offspring

Fitness: expected genetic contribution of an individual or genotype to
future generations

Natural selection is expected to favor a combination of traits that maximize
fitness.

LHT = fitness components. Many of them are demographic variables of the
considered organism.

Life history & fitness

Year 1 Year 2 Year3
GenotypeA| 0 1 1
* Measuring fitness is not easy.
- GenotypeB | 0 [ 2
* Some statistics commonly used:

— LRS (Lifetime reproductive success = total number of offspring
produced in lifetime)

— R, (Net reproductive rate, from life tables)

— r(from life tables) and A (from matrix models)

* Best way to max fitness:
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=> “Darwinian demons” (Law 1979)

Trade-offs & principle of allocation

However, such organisms cannot exist because life histories are constrained by
external factors (resources, competitors, predators, etc.) and trade-offs among
LHTs.

Current reproductive
effort . Future reproduction
Survival

Allocation of resources

Principle of allocation (Levins 1968): each organism has a limited amount of
energy that can be allocated for maintenance, survival, growth and
reproduction. Energy allocated to survival is not available for reproduction or
growth.

Trade-offs & principle of allocation

Growth

. Survival
Ingestion & Maintenance
Assimilation -
Reserves Somatic effort

Surplus Power Reproductive effort

Maturity
maintenance

Reproduction

Energy budget model

Trade-offs

Central to life history theory
Represent the cost paid in the currency of fitness when a beneficial change in
one trait is linked to a detrimental change in another
The most prominent life-history trade-off is the cost of reproduction (Stearns
1989) in terms of survival and future reproduction

— Reproduce or survive? Now or later?

Reproductive value = Current Reproduction + Residual Reproductive Value

\

expected contribution to the
population through both
current and future reproduction

“left” for future
reproduction

So, reproductive value is not only related to reproduction, but also to survival.




Trade-offs

* Intra-individual trade-offs:
— Current reproduction vs. survival
— Current vs. future reproduction
— Reproduction vs. growth
— Reproduction vs. condition

Collared flycatcher
Gustaffson and Part (1990)

Clucth size

I
Age (years)
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Trade-offs

* Intra-individual trade-offs:
— Current reproduction vs. survival
— Current vs. future reproduction
— Reproduction vs. growth
— Reproduction vs. condition
— Number vs. size of offspring
— Number vs. survival of offspring

Optimal brood size in the blue tit

EANS

"o

Blue tit experiments
(Nur 1984,1988)

Trade-offs

Intra-individual trade-offs:
— Current reproduction vs. survival

— Current vs. future reproduction
—> parent

}—> offspring

— Reproduction vs. growth

— Reproduction vs. condition
— Number vs. size of offspring
— Number vs. survival of offspring

Trade-offs

Intra-individual trade-offs:

— Current reproduction vs. survival
— Current vs. future reproduction
— Reproduction vs. growth

— Reproduction vs. condition

—> parent

— Number vs. size of offspring
— Number vs. survival of offspring

}—* offspring

Inter-generational trade-offs (parent-offspring conflicts):
— Number of offspring vs. parental survival

— Offspring condition vs. parental survival

Adult annual survival rate

Blue Tit populations versus other tits
08
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Dhondt 2001 (Ardea 89:155-166)

r-K selection




The r-K selection
(Pianka 1970)

A heuristic (and much debated) way to classify species based on Verhulst’s
logistic equation of population regulation:

d—N =rN|1- E
dt K
] \ Carrying
Rate of capacity
population Per caplita Population
change  Population size

growth rate

« r-selected = high growth rate (r)
* K-selected = subsist near the carrying capacity of their environment (K)
* Attempt to place species along the r-K continuum
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r-K selection

Maturity Early Late
Offspring Many, small Few, large
Parental care Low High
Survival Low High
Body size Small Large
Generation time Short Long
Lifespan Short Long
Environment Unpredictable Predictable
Succession Early Late
Refer to Colonizers Competitors
Example mice elephants

Criticism of the r-K selection

Fast-slow continuum (Promislow & Harvey 1990)

Live a “fast” life
Die young

Live a “slow” life
Live long

r-strategy K-strategy

* See Gaillard et al. (1989) and Stearns (1992) for criticism of the r-K
selection theory for focusing on density-dependent selection.
* The r-K selection paradigm was replaced by new paradigm that focused on
age-specific mortality (Wilbur et al. 1974, Stearns 1976, Charlesworth 1980):
— amore mechanistic link between an environment and an optimal life history

— age/stage structured models as a framework (next section)

Further reading

Stearns (1992) The evolution of life histories
Roff (1992) The evolution of life histories
Roff (2002) Life history evolution

‘The Evolution
of Life i

Watch Stearns’ lecture online at:
http://academicearth.org/lectures/life-history-evolution

Lecture Outline

A very brief intro to bio-demography
Life history theory

— Traits and trade-offs

Linking reproduction and survival together

— Matrix population models

Linking reproduction and survival together

4
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s A gentle intro to matrix population models
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Life goes through stages ...

* When there are obvious differences in the performances of different life
history stages and these differences are hypothesised to be important, we
use structured population models.
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First step of the model: A life cycle

Number of individual at each stage

89 207
66 | = Population model * | 81
150 140
89 0 0 064 )[(207
66 | = [ 032 0 0 [ 81
150 0 031 089 Jl140

~

n,=A.n,

Juvenile Subadult Adult Sum

1. year 207 81 140 428

2. year 89 66 150 305
Age ~ Stage

Data collection: When to census?

¢ Two popular variants: Dre-treeding census () Post-breeding census a)

— Pre-breeding: assume that the
census is carried out
immediately before breeding
the subsequent year.

— Post-breding: assume that the
census is carried out at some
point after the “birth pulse”.

— Cooch et al. (2003) give an
excellent description of the
difference.




Practical: life-cycle graphs
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Life-History 1: smurfs

Draw an age-based life-cycle of “Smurfs” based on the
description below:

=The population was censured immediately before
breeding.

=Smurfs live for 4 years; no individual has ever been
recorded to reach the age of 5.

=Smurfs cannot remain at the same age more than one
year.

=Smurfs become reproductively mature (papa smurf) at
the age of 4

=This is a male-only model, we ignore the smurfette.

=Hint: write the age of each age-class in the appropriate
square/circle

Life-History 2: great tits

Draw the great it life-cycle according to the description
below

=The population was censured immediately before
breeding.

=Great tits can live up to 9 years of age (and perhaps
even older).

=Data is sparse when great tits become older than 5; pool
these age-classes together.

=Great tits are able to reproduce after their first year.

Life-History 3: teasel

Draw a stage-based life-cycle of teasel based on the
description below (reproduced from Werner 1977 Ecology
58: 840-849):

=Teasel is commonly classified as a biennial, producing a
low vegetative rosette up to 60cm in diameter, which
overwinters and is followed in a succeeding growing season
by a stout flowering stem 0.5m to 2.5m in height.

=In actuality, the year of the flowering is not a function of the
plant’s chronological age, but rather depends upon the
attainment of a minimum rosette size (~0.3m diameter),
which may require several years of growth.

=An individual plant dies after flowering; there is no
vegetative reproduction and all stages of the life-cycle are
easily recognizable.

=A cohort of teasel seeds spreads its germination over more
than one growing season.

* The life cycle & population projection matrix

=The assumption of uniform performance regularly fails. Matrix
models are one form of structured model to address this
assumption.
* Demograph .
=There are many different ways of splitting a population into
- growth groups; age and stage are common.

— structure =All transitions between (st)ages must have the same duration.

— reproductive value
— elasticities and sensitivities

* Assumptions
— Environmental Stochasticity
— Non-equilibrium populations

Matrix = mathematical
representation of life cycle




Matrix = mathematical
representation of life cycle
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Examples of matrices from biological systems

Blue parts of the matrices represent non-zero elements

lambs yearlings  prime adults senescents

lambs
yearlings
prime adults
senescents

eggs catipillar pupae adult

eggs
catipillar|
pupae|
adult

Examples of matrices from biological systems

Age yeart 90 91 92 93 94 95 96 97 98 99 100+

x

]

2

3
<

What do the elements of a matrix mean?
Class in year t
1 2 3 4 5

bRl R

5 2 1->2

>

e 3

E 4

© s

What do the elements of a matrix mean?

Class in year t
1 2 3 4 5

Class in year t+1
o B W N =

O oo oo

What do the elements of a matrix mean?

Class in year t

1 2 3 4 5
T 1] 1t

§ 2| 1->2

>

£ 3| 1->3

EA

© s

§




What do the elements of a matrix mean?

Class in year t

1 2 3 4 5
T 111 21
§ 2 1->2
3
c 3| 1->3
g4
© 5

?
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What do the elements of a matrix mean?

Class in year t
1 2 3 4 5

T o1 11 221
5§ 2 1>2 252
S

£ 3| 1->3

g4

© s

What do the elements of a matrix mean?

Class in year t

1 2 3 4 5

‘£ 1 1->1 2->1 3-->1 4-->1 5-->1
5 2[1>2 22 3->2 4->2 5->2
; 3 1->3 2->3 3-->3 4-->3 5->3
8 4l 154 254 354 44 554
o 5| 1->5 2-->5 3-->5 4-->5 5-->5

THE BIOLOGY The top row of the matrix often represents
fecundity (recruitment). In a pre-breeding matrix, then this the
per capita number of offspring that are almost 1 year old, i.e. that
reach the time of the subsequent census.

THE BIOLOGY The sub-diagonal of the matrix represents
progression from one class to the subsequent one.

In age-structured matrices, this contains individuals of age A
that survive to be one year older in the subsequent year.

In stage-structured matrices, this contains individuals of stage S
that grow to stage S+1 in the subsequent year.

fL fY fP fP fP P fP fO]
sL. O 0 0 0 0 0 O
0 sY O 00 0 0 O
A= 0 0 sP OO O O O

0 0 0sP O O O OF}

0 0 0 0 sP0O0 O O
0 0 00 0 sP O O

L0 0 0 0 0 0 sP sO]

THE BIOLOGY The main diagonal of the matrix represents

stasis.

In pure age-structured matrices, this value is always zero
(individuals either age or die).

In stage-structured matrices, this contains individuals of stage S
that remain in stage S in the subsequent year.

10
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N.B. Other values need not be zero. For example, the super-
diagonal reflects regression, e.g. shrinkage from size S+1 to size
S from one year to the next.
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Practical: “active” cells in transition matrices

The life cycle & population projection matrix

=A matrix is a mathematical

Demographic inference from | reeresentatonoftne ffe-

cycle graph.
—growth =Read the transitions from

the column number to the
— structure row number.

=Stage-structured matrices
have more active cells than
age-structured matrices.

— reproductive value

— elasticities and sensitivities

Assumptions
— Environmental Stochasticity
— Non-equilibrium populations

Matrix elements

e 1.year
— 207 juveniles
— 81 subadults
— 140 adults
e 2.year
— 89 juveniles
\ — 66 subadults

— 150 adults
(25 new, 125 old)

m -
A
- =

i

&

Matrix elements

w
W =

e 1.year
— 207 juveniles
— 81 subadults
= 140 adults

—
mc =
P 2% N140 * 2.year

. 89 juveniles

. — 66 subadults
— 150 adults
(25 new, 125 old)

Matrix elements

e 1. year
— 207 juveniles
— 81 subadults

s 89 — 140 adults
PR / 140 |+ 2.year
— 89 juveniles
ﬁ Riky — esj badult
L 207 subadults
— 150 adults

(25 new, 125 old)

11



Matrix elements

e 1.year

macs w — 207 juveniles
Xﬁ b — 81 subadults
89

— 140 adults
0 0 140 |+ 2.year
66 — 89 juveniles
— | 0 0 — 66 subadults
207
— 150 adults
25 | 125 (25 new, 125 old)
81 | 140

28/10/14

Matrix elements

e 1.year
[ ¢ B — 207 juveniles
ﬁﬂ w — 81 subadults
— 140 adults
0 | 0 |0636] . year
— 89 juveniles
=8(0.319| 0 0 — 66 subadults
— 150 adults
25 new, 125 old
S o |0308]0893 (25 new, 125 old)

Yri o ovr2 & \‘ .
Agel 90 160
Age 2 60 27
Age 3 100 24
Aged 80 90

Werner & Caswell (1977) proposed a life-
cycle for Teasel (Dipsacus sylvestris Huds.)

o
Dormant (1)
seeds \_/

K
<G
)
-
Dormant ("5~ 19
seeds (%)

Rosettes

Practical: the Teasel transition matrix

0961 0 0 0 0

3224

0039 0 0 0 0

108.6

0 0 |0378| 0 0
0 0 0 [0357| 0

0 |0.004(0352(0429| 0

* The life cycle & population projection matrix

* Demographic inference from matrix models
— growth
— structure
— reproductive value
— elasticities and sensitivities

* Assumptions
— Environmental Stochasticity
— Non-equilibrium populations

12
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Projection method: matrix multiplication Projection method: matrix multiplication
3x3 3x1 3x1
0 | o |0636| | 207 0 | o |063%6 R
0319 0 | 0 |@| 81 |— 0319 0 | 0 |@ —
0 1]0.308|0.893 140 0 10.308(0.893
428 428
11 t1
Projection method: matrix multiplication Projection method: matrix multiplication
0 0 10.636 89 0636140 = 89 0 0 10636 89 0636140 = 89
0319| 0 0 |@ = 6. 0.319*207 = 66 0.319] 0 0 |l@ =| 66 0.319207 = 66
0 1]0.308(0.893 0 10.308(0.893 1! 030881
+0.893 * 140 = 150
428 428
11 t1
Projection method: matrix multiplication Projection method: matrix multiplication
0 | 0 |06% 89 0 | o |0636 o5l
0319| 0 | 0 | - 5. 0319) 0 | 0 | - 2'
0 |0.308/0.893 1' 0 |0.308/0.893 1!
428 305 428 305 277
11 t2 t1 t2 13

13



Projection method: matrix multiplication

0 0 |0.636
0.319] 0 0

0 ]0.308(0.893

428 305
ot

217
t
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Projection method: matrix multiplication

Projection method:

matrix multiplication

0 | 0 [0636 9.
0319 0 | 0 |@ — 3.
0 [0.308/0.893 1'
428 305 277 275 264
t1 tZ t3 t4 t5
Population growth rate
. [®
\ 207 89
)
g | 305
g —=0.713
Bl 8 66 428
: U%“m% 140 | | 150
S e T 428 305

e{]
0 | 0 |0636 M
0319 0 | 0 Is
0 |0.308(0.893 : oo,
o, S
Time
S
( Z &
%’5} 7 l\' ) Village A Village B Village C Village D
0;02 Year | 1 [ 2 [t f2 |12 |12
"8 | 100 0 0 100
0.3 0 0 Age 100 100 0 0
01041 0 el o 100 100 0
0 0 | o9 el o 0 100 100
i Sum
N,
N,

What if we don’t know the number of individuals?

0 0 10.636
0319 0 0
0 ]0.308|0.893

Characteristic equation: det(A-Al) =0

=Lambda (A) = dominant eigenvalue

=Lambda (A) = population growth rate

=Right eigenvector (v,) = stable (st)age structure

sLeft eigenvector (w,) = reproductive value

14



A: asymptotic population growth

§ |
N ER A>1 exponential
2
5 growth
<
S s |
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o
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\ A<1 exponential
1 T . T T - decay
0 20 40 60 80 100
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Exponential growth/decay: linear on
the log scale

©
E A>1 exponential
(2]
D ol growth
S
k<t
El
2
o
[
14 .
= A=1 stasis
oo A<1 exponential
. T T : T + decay
0 20 “0 60 s 100
Time

A: asymptotic population growth £ %

In nature plants and animals produce far more offspring than
can survive, and man too is capable of overproducing if left
unchecked.

Malthus concluded that unless family size was regulated, man's
misery of famine would become globally epidemic and
eventually consume Man.

Malthus (1798), Essay on the Principle of Population (1798): http://www.biw.kuleuven. 1798.pdf

Asymptotic population growth rate, A

o |1
g1
|38 0713
| 428
g%
§
g
5. %
2§
%,
000y
o W ow w0 @
Time

Eigen-analysis documents the eventual behaviour of the system

Stable stage distribution, v,
T s

TA

When scaled
appropriately, the
right eigenvector
associated with A is
the asymptotic
proportion of
individuals in each
(st)age class.

Stable stage distribution, v,

LI

10

08
L

06
L

BELHLE L

0.4
L

02
L

Proportion of Individuals in each Age-Class

00
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Abundance

Stable stage distribution, v,
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o
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Back to reproduction: Reproductive value

* Thereis also a left eigenvector (w) which gives reproductive values of each
stage for the population at equilibrium structure

* Reproductive value (Fisher 1930):

“To what extent will persons of this age, on the average, contribute to the
ancestry of future generations?

This question is of some interest, since the direct action of Natural
Selection must be proportional to this contribution.”

* Reproductive value = Current Reproduction + Residual Reproductive Value

Reproductive value, w,

Reproductive Value

o
o_-

Fledglings

Subadults Adults

(St)age Class

Sensitivity & Elasticity

= Quantify the impact of a
demographic rate on A.

= Useful in conservation biology

which demographic stage
should | focus conservation
efforts at?

= Evolutionary ecology

sensitivities are related to
selection gradients of
quantitative traits

Reproductive value, w,

01 Function of both recruitment
and survival probability. For
most vertebrates reproductive

Reproductive value
°
=3
8

002 value peaks with young
o breeding adults
O T
&
¥
A
&

Sensitivity & Elasticity

16



Sensitivity

0 | 0 |0.64

032 0 0 [ a=0.96

0 10.31]0.89
0 | 0 |064
0.32

+ ] 0| 0 |Az0963
0.01

0 |0.31]0.89

28/10/14

Elasticity

032 0 0 [ a=096

0 ]0.31]0.89

0 | 0 |064
0.32

X | 0 | 0 |A=0961
1.01

0 |0.31]0.89

Elasticity = Proportional sensitivity

0| 0 {009
3

\ 019 0 | 0 da,
|
' 0 |019]0.88
1
1
| 0| 0 |006
' 4y o2
! 006 0 | 0 | 9a,
J

0 |006{0.82

Software: A, w, v, sensitivities and elasticities

* Poptools in Excel (http://www.cse.csiro.au/poptools/)

lelx|

|
B EOt Wew fuert Fomst Tools | Eopock | pa_wide_eob Tpeact
i ook

DEEB(ERY =
I

&

R R

o
&
e

A, w, v, sensitivity, elasticity

Caswell, H. Matrix population models. John Wiley & Sons, Ltd, 1989.

mat<-matrix(c(0,0.32,0,0,0,0.31,0.64,0,0.89),nrow=3,ncol=3)
w<-Re (eigen (mat) $vectors[,1]); v<-Re(eigen (t (mat))$vectors[,1])
lambda<-Re (eigen (mat) $value[1]) # LAMBDA

sad<-w/sum (w) 4 STABLE AGE DISTRIBUTION

rv<-v/v[1l] # REPRODUCTIVE VALUES

temp<-rv %*% sad; temp<-as.vector (temp)
transp.sad<-t(sad);temp.mat<-rv %*% transp.sad

sens<-round (temp.mat/temp, 2) # SENSITIVITIES
temp<-mat/Re (eigen (mat) $value[1l])

elas<-sens*temp; # ELASTICITIES

* Assumptions

# or:
library (popbio)
eigen.analysis (mat)

* The life cycle & population projection matrix

=Deterministic approach: if A<1,
then the population will go

* Demographic inference from | exinct i everything remains

constant.
— growth i
=Describes the eventual
— structure dynamics of a system; an initial
transient phase can have
— reproductive value different characteristics.

— elasticities and sensitivities
=Elasticities and sensitivities are
measures of the importance of a
demographic rate on A.

=Elasticities are more readily

_ - P comparable than sensitivities
Environmental Stochasticity across demographic rates that

— Non-equilibrium populations | diferby large amounts.

17



Practical: Simulation & demographic inference

28/10/14

* The life cycle & population projection matrix

* Demographic inference from matrix models
— growth
— structure
— reproductive value
— elasticities and sensitivities

* Assumptions
— Non-equilibrium populations
— Environmental Stochasticity

Demographic rates influenced by a wide range of factors

Climate

Competition for resources

4 A1
2
. ,

§ > Most populations don’t grow or
c decline exponentially, or remain
'—E ' A=1 static

g \——‘__

2 A<1

R R
time

20000 o

18000 . Because of the variation in

bt demographic rates, the concept of
12000
= om0 \/\/

1960 1070 1980 1090 2000
Year

Variation in population size
(N) and population growth 1

(A) caused by temporal g 08
P . . §o7 —8— lambs
variation in demographic Zos T s
rates Eo o primes
03 nt

1985 1990 1995 2000 2005
Year

What processes do
deterministic matrices ignore?

ENVIRONMENTAL PROCESSES
* Density-dependence
¢ Environmental stochasticity

EVOLUTIONARY PROCESSES
* Adaptation
* Demographic stochasticity (genetic drift)

18
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Demographic rate variation

* The incorporation of
variation in demographic These become
functions

rates into matrices
requires matrix elements 0

to be functions

Example of a function

Logistic and Gompertz
functions are often used

09 |
08 |
07+ _ ’
06 | —-—2
05 | |
04 |
03 |
02 |

Probability of survival

Population size

Transients

10

08
L

06
L

\HLII || || L

02

Abundance
o
Proportion of .ndividuals in each Age-Class

Transient growth can be very
different from asymptotic growth

g =
g
c
g
z
3 @
2 o
8
S

Time

Elasticities of asymptotic and transient growth
can be quite different

(a)
IIIIIIIIII..II__

(6)

Elasticity for
ransiont oromth F—

H HHHHHHHHHH

o g

lower-level demographic parameter

Essay on the Principle of Population (1798)

In nature plants and animals produce far more offspring than can
survive, and man too is capable of overproducing if left
unchecked. Malthus concluded that unless family size was
regulated, man's misery of famine would become globally
epidemic and eventually consume Man.

Population growth is geometric!

Thomas Malthus http://www.ac.wwu.edu/~stephan/malthus/malthus.0.html|
(1766-1834)

In October 1838, that is, fifteen months after | had begun my
systematic inquiry, | happened to read for amusement
Malthus on Population, and being well prepared to appreciate
the struggle for existence which everywhere goes on from
long- continued observation of the habits of animals and
plants, it at once struck me that under these circumstances
favourable variations would tend to be preserved, and
unfavourable ones to be destroyed. The results of this would
be the formation of a new species. Here, then | had at last got 3

a theory by which to work. i
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Further reading

« Caswell(2001) Matric population models
* Morris & Doak (2002) Quantitative conservation biology
« Mills (2013) Conservation of wildlife populations

WA Monas-DuxsFDouk CONSERVATION OF

WILDLIFE
Consamon Mot POPULATIONS

Matrix
Population
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