
Practical: Matrix Models 

Life-History 1: smurfs 
Draw an age-based life-cycle of “Smurfs” based on 

the description below: 
§ The population was censured immediately before 

breeding. 
§ Smurfs live for 4 years; no individual has ever been 

recorded to reach the age of 5. 
§ Smurfs cannot remain at the same age more than 

one year. 
§ Smurfs become reproductively mature (papa smurf) 

at the age of 4 
§ This is a male-only model, we ignore the smurfette. 
§ Hint: write the age of each age-class in the 

appropriate square/circle 
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Life-History 2: great 
tits 

Draw the great tit life-cycle according to the 
description below 
 

§ The population was censused immediately 
before breeding. 

§ Great tits can live up to 9 years of age (and 
perhaps even older). 

§ Data is sparse when great tits become 
older than 5; pool these age-classes 
together. 

§ Great tits are able to reproduce after their 
first year. 
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Life-History 3: teasel 
Draw a stage-based life-cycle of teasel 

based on the description below 
(reproduced from Werner 1977 Ecology 
58: 840-849): 

§ Teasel is commonly classified as a 
biennial, producing a low vegetative 
rosette up to 60cm in diameter, which 
overwinters and is followed in a 
succeeding growing season by a stout 
flowering stem 0.5m to 2.5m in height. 

§ In actuality, the year of the flowering is not 
a function of the plant’s chronological age, 
but rather depends upon the attainment of 
a minimum rosette size (~0.3m diameter), 
which may require several years of growth. 

§ An individual plant dies after flowering; 
there is no vegetative reproduction and all 
stages of the life-cycle are easily 
recognizable. 

§ A cohort of teasel seeds spreads its 
germination over more than one growing 
season. 
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Using the data from 
two years (above), 
estimate the matrix 
elements. 
 
Using your 
parameterized matrix 
and the population 
structure of each 
village in year 1 (right), 
estimate the 
population structure in 
year 2, and estimate 
the population growth 
rate from year 1 to 
year 2. 4 



Using the following life-cycle graph and the 
experiment results (overleaf), fill the Teasel 
transition matrix 

DS 

FP 

R2 

R1 

R3 

R4 

Compare this life-cycle graph with 
the one you drew previously, 
especially when calculating the 
transition rate from FP to R1. 
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Experiment Results: 
1000 teasel seeds were introduced into a field, which 
did not have any teasels before.  Each individual was 
followed for each of 5 subsequent years. 
 
The table shows the fate of the seeds.  They are 
classified according to different developmental 
patterns as described in the left-hand side of the 
table (DS= dormant seeds; R=rosettes; F=flowering 
stalk; x=death). 

Developmental pattern Number of 
individuals 

from 
cohort 

from 1000 
seeds 

Census/Year 

1 2 3 4 5 

Rx 222 

R Rx 8 

R R Rx 2 

R R R Rx 1 

R R R R Rx 2 

R F 1 

R R F 12 

R R R F 4 

R R R R F 0 

DS Rx 21 

DS R Rx 2 

DS R R Rx 1 

DS R R R Rx 2 

DS R F 0 

DS R R F 1 

DS R R R F 2 

Reading the table. 
The 1st row of the table tells us that 222 seeds, which 
germinated before census 1, died before census 2. 
 
The 7th row tells us that 12 seeds germinated before 
census 1, remained as rosettes at census 2 and were 
classified as a flowering stalk at census 3. 
 
Obtaining transition rates from the table. 
Out of 1000 seeds, 222+8+2+1+2+1+12+4+0 = 252 
germinated in their first year (before census 1).  The 
transition rate for seed to rosette year 1 (S > R) is 
252/1000 = 0.252.  How many seeds remain dormant?  
What is the transition rate from seeds to dormant seeds?  
 
Consider the transition rate of rosette year 1 to flowering 
stalk. 252 germinated before census 1; 29 
(21+2+1+2+0+1+2) germinated from DS at census 2 as 
well though.  Therefore, the total number of rosette year 1 
is 252+29 = 281.  Of these 281, 1 (1+0) is a flowering stalk 
at the next census.  R1 > F is therefore (0+1)/(252+29) = 
1/281 = 0.004. 
 
As a final example, consider the transition rate from 
rosette year 1 to rosette year two.  As above, there are 
281 rosette year 1 individuals. Of these, (8+2+1+2+12+4) 
+ (2+1+2+1+2)=37 are rosette year 2 at the subsequent 
census.  The rate is therefore 37/281=0.132 
 
All required information to fill the matrix is contained within 
the table, except that each flowering plant produces 431 
seeds.  What is the transition rate from flowering plants to 
rosette year 1?  Why is 431 important? 6 



Computer analysis: 
R may seem intimidating, but it is freeware (means if you 
change institutions you don’t need to learn a new program 
like SAS, MATLAB, etc…), updated incredibly regularly by 
the finest academic minds working at the cutting edge (it 
reaches theory that commercial products do not) and has 
an extensive online support network (who report bugs, etc. 
faster than elsewhere).  It really is worth spending some 
time getting to grips with it.  Some tips: 
 
> R is case-senstive, i.e. R is not r. 
> If  you type the up arrow, you get the last line you typed 

 (this is especially useful for correcting typos) 
> Enter commands in a text editor (R has one, or use 

 notepad, etc..) and then cut and paste 
 everything in. 

> Use # to comment out descriptions of your code, so you 
 can remember what each bit does. 

Questions to be answered or things to do are in italics, with lines to enter into R 

given in Courier New. 
 
Entering the matrix in R 
Define a matrix filled with zeros and 6 rows and 6 columns using 
M <- matrix(0, nrow=6, ncol=6) 
fix(M) 
This opens a window where you can change 0s as appropriate, ending up with your transition 
matrix.  Once all the matrix elements are correct, close the window and look at the matrix 
M 
 

Calculating population growth 
What quantity is the asymptotic population growth rate (λ)?  This can be obtained using the function 
eigen(): 
eigen(M)  
This opens a list containing eigenvectors and eigenvalues. What is the eventual fate of this 
population? Why?  Write down λ. Store this information in eigM by typing 
eigM <- eigen(M) 
 
There are many eigenvectors; each is associated with an eigenvector.  Which is the stable-(st)age 
distribution? 
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Calculating the stable-age distribution 
Store the stable-(st)age distribution as sadM by typing 
sadM <- eigM$vectors[,1] 
sadM 
 
The square brackets are used to pick out particular parts of a matrix.  So M[1,1] is the element of 
M in the first row and first column. M[6,3] is the element of M in the 6th row and 3rd column.  
Leaving nothing before or after the comma selects all elements in that column or vector, 
respectively.  Why is the number after the comma 1 to calculate the stable-(st)age distribution? 
In a vector (a matrix that has only one column), only one reference point is required. 
 
The stable-(st)age structure is scaled as the proportion of individuals in each (st)age.  This can be 
obtained by simply dividing sadM by the total number of individuals, I.e. sum(sadM): 
sadM <- sadM/sum(sadM) 
sadM 
 
Note that this overwrites the previous sadM.  Write down the stable-(st)age structure.  Which 
(st)age class eventually contains most individuals?  You may see 0i ; this is the imaginary part of 
the number; we have no need for them here!  If they’re annoying, retain just the real parts using 
Re() 
 
 

Calculating the reproductive value 
The stable-(st)age distribution is the right eigenvector associated with the dominant eigenvalue; 
reproductive value is the left eigenvector associated with the dominant eigenvalue.  To calculate 
this, take the eigenvector of the transpose of M. 
rvM <- eigen(t(M))$vectors[,1] 
 
What is a transpose?  Have a look. The reproductive value is scaled to the size of the first element: 
rvM <- rvM/ rvM[1] 
rvM 
 
Write down the reproductive value of each stage. Which (st)age class eventually has the highest 
reproductive value? Why is that not a surprise? 
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Calculating sensitivities and elasticities 
Copy and paste the function eigen.analysis in R: 
 
eigen.analysis <- 
function(A){ 
 ev <- eigen(A) 
 lmax <- which(Re(ev$values)==max(Re(ev$values))) 
 lambda <- Re(ev$values[lmax]) 
 W <- ev$vectors 
 w <- abs(Re(W[,lmax])) 
 V <- Conj(solve(W)) 
 v <- abs(Re(V[lmax,])) 
 s <- v%o%w 
 s[A == 0] <- 0 
 class(s) <- "leslie.matrix" 
 e <- s*A/lambda 
 rho <- lambda/abs(Re(ev$values[2])) 
eigen.analysis <- list(lambda1=lambda, 
rho=rho,sensitivities=s,elasticities=e, stable.age=w/
sum(w),repro.value=v/v[1]) 
eigen.analysis 
} 
 
 
And, execute the function on the matrix M: 
 
eigen.analysis(M) 
  
 
Which demographic rate has the highest sensitivity? Which demographic rate has the highest 
elasticity?  Why are these different?  What other information (that you’ve already calculated) can be 
gleaned using this function? 
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Population Dynamics 
We want to initialize a population with 1000 seeds. Which (st)age is seeds?  Initialize a vector 
called v0 with as many stages as given by the life-cycle graph. 
 
Matrix (dot) multiplication is achieved using %*% in R.  If v0 is the initial vector and M the 
transition matrix, v1 can be calculated and viewed as follows: 
v1 <- M %*% v0 
v1 
 
The one-step population growth rate is: sum(v1)/sum(v0) 
Is this the same as λ? Adapt these lines to calculate the population vector at time 2 and the one-
step growth rate between time 2 and time 1. 
 
We want to project the population forward across multiple time steps.  The easiest way is using a 
loop. Begin by initializing where data will be stored.  You’ve already got v0 above, so define a 
vector to receive the population size at each time step and the number of time steps: 
nTime <- 20              #the number of time steps               
popSize <- numeric(nTime)#to receive each population size 
pV <- v0                 #the initial population vector 
   
A for loop repeats commands contained within {} a specified number of times (nTime). 
for (i in 1:nTime) 

 { 
 popSize[i] <- sum(pV) #store total popSize 
 pV1 <- M %*% pV       #calculate the new pV 
 pV <- pV1    #overwrite old pV with new pV 
 } 

 
Plot the population trajectory: plot(popSize,type=‘b’) 
Is the population increasing exponentially? plot(log(popSize),type=‘b’) 
 
Adapt the above to store the population structure at each time step and plot the population 
structure: 
popStruct <- matrix(0,nrow=dim(M)[1],ncol=nTime)  
pV <- v0                
for (i in 1:nTime) 

 { 
 popStruct[,i] <- pV/sum(pV)   #store popStruct 
 pV1 <- M %*% pV        
 pV <- pV1  } 

barplot(popStruct) 
Has the stable-age distribution converged?  If not, change nTime and try again! 
 
The projections above were initialized with 1000 seeds. What happens if the population was 
instead initialized by one invasive plant?  Write down v0 for this scenario, and use your loops to 
project the population forward.  Does λ change? Is the stable-age distribution reached in more or 
fewer generations than in the previous example? Why? 
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